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ABSTRACT  

The proliferation of Internet of Things (IoT) devices has resulted in a landscape of unprecedented security challenges. With rapidly 

increasing levels of threats, traditional security approaches fall short of meeting the unique challenges exerted by these IoT environments. 

The goal of this research is to evaluate the effectiveness of various machine learning models in attack pattern recognition while establishing 

a performance benchmark for adaptive threat detection. A dataset consisting of 48,003 network flow records encompassing 25 features was 

collected from Kaggle to implement three machine learning algorithms: Random Forest, XGBoost, and LightGBM, and compare their 

performance. The comparison involved an assessment of the accuracy of an attack detection model depending on the class of the targeted 

attack and an assessment of each functional feature of the model.XGBoost was the best model, which achieved an overall accuracy of 90%, 

while Random Forest and LightGBM had lower performances at 81% and 50%, respectively. Additionally, based on the feature importance 

analysis, duration, connection status, and Byte-related metrics were found to be the most important indicators for attack detection, while 

the feature duration had consistent importance across all models.  This work shows a better performance of gradient boosting approaches 

on IoT threat detection problems, particularly in handling class imbalance challenges. The results provide insights into the optimization of 

feature selection in resource-constrained IoT environments and raise awareness for new studies on minority attack class detection and 

model optimization with IoT-specific constraints. 

Keywords: Internet of things security, machine learning, Threat intelligence, Attack pattern recognition, Network flow analysis. 

 



INTRODUCTION 

The proliferation of Internet of Things (IoT) devices has fundamentally transformed the digital landscape, creating an 

interconnected ecosystem that spans homes, industries, and critical infrastructure (Anthi et al., 2019). With an 

estimated 14.4 billion active IoT connections in 2022 and projections reaching 27 billion by 2025, the scale and 

complexity of IoT networks present unprecedented security challenges (Jawad et al., 2022). This has, in turn, created 

an exponentially large attack surface playground that cybercriminals increasingly exploit, making adaptive threat 

intelligence so crucial in securing these varied and vulnerable systems. 

IoT security has significantly digressed from the traditional paradigms of network security (Palattella et al., 2016). 

IoT devices, often constrained by their limited computation capability, diverse communication protocols, and frequent 

variations in firmware, create some unique security challenges that conventional threat detection methods are 

impracticably ill-equipped to handle (Khan and Salah, 2017; Sisinni et al., 2018). In recent years, IoT-targeted attacks 

have dramatically shifted to the aspect of sophistication and diversity. The emergence of IoT-specific malware 

families, such as Mirai and its variants, demonstrates the evolving nature of threats facing these networks (Kolias et 

al., 2017; Kambourakis et al., 2017). Traditional signature-based detection methods, while effective against known 

threats, often fail to identify novel attack patterns or variants of existing malware (Kambourakis et al., 2017). This 

becomes particularly critical in IoT environments, as devices might be expected to operate for an extended period with 

minimal updates, and attack patterns can evolve quickly to take advantage of newly discovered vulnerabilities. 

Machine learning approaches represent a promising solution for improving IoT security by adapting to emerging 

threats and discovering subtle patterns in network behavior (Hasan et al., 2019). Recent research has shown that 

machine learning-based models can achieve detection rates as high as 90% for unseen IoT attack variants when trained 

with comprehensive network flow data (Churcher et al., 2021). These studies also identified the key challenges of 

real-time threat detection in IoT environments, since the processing capabilities and available memory are very 

limited. 

The concept of adaptive threat intelligence is also novel in IoT security (Haughey et al., 2018). Unlike traditional 

threat detection systems, adaptive approaches can evolve their detection capabilities based on observed network 

behavior patterns. Studies also showed that adaptive systems could reduce false positive rates by up to 40% compared 

to static detection methods while maintaining high detection accuracy for novel threats (Restuccia et al., 2018; 

Kanimozhi and Jacob, 2019). This adaptability is particularly important in IoT contexts since device behaviors and 

traffic can change substantially with different deployment contexts and application needs. 

The challenge of class imbalance in IoT security datasets, however, represents a significant hurdle in developing 

effective threat detection systems (Deri and Sartiano, 2020; Almaraz-Rivera et al., 2022). Real-world IoT network 

traffic is usually dominated by benign communications, where malicious activities form a small but critical minority 

of the traffic. A potential consequence of this imbalance is the modeling bias that may result in poor detection 

performance for less frequent but potentially devastating types of attack (Ahmad et al., 2021). On the other hand, 
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several recent studies have shown promising results from integrating multiple machine learning algorithms into IoT 

threat detection systems. Comparisons in (Churcher et al., 2021) among different approaches using machine learning 

methods such as Random Forest, XGBoost, and LightGBM have shown that several of these aspects can be captured 

with ensemble methods without sacrificing too much in computation. Their research demonstrated that the 

combination of multiple algorithms provides a more robust detection capability for various kinds of attacks with a 

minimum false positive rate. 

However, current methods for IoT threat detection suffer from significant inefficiencies. Most of the existing systems 

face difficulty in maintaining high accuracy for all types of attacks, especially for emerging threats and less frequent 

attack patterns. In addition, the challenge of developing systems that can operate across diverse IoT deployments while 

maintaining acceptable performance remains mostly unaddressed. These limitations emphasize a need for more 

adaptive and robust approaches to IoT threat intelligence. Considering the challenges presented and the state of 

research related to IoT security, the research endeavor will develop and evaluate an adaptive threat intelligence 

framework specifically for IoT environments. The specific objectives on which this study focuses are: 

1. To assess the effectiveness of multiple machine learning algorithms in identifying and classifying diverse IoT attack 

patterns. 

2. To analyze the relative importance of different network flow characteristics in detecting various types of IoT attacks. 

3. To establish benchmark performance metrics for adaptive threat detection across different attack categories 

MATERIALS AND METHODS 

Dataset Description and Preprocessing 

This study utilized a comprehensive IoT network traffic dataset containing 48,003 network flow records with 25 

distinct features. The dataset comprises a normal network and cyber attacks to provide a realistic adaptive threat 

intelligence development and performance evaluation environment. Network flow records were collected and 

preprocessed with the inclusion of important network communication parameters like duration, byte counts, packet 

information, and connection states.   

The features of the dataset can be grouped into three major classes: flow metrics, protocol indicators, and connection 

states. The flow metrics involve basic measurements of duration, original bytes, response bytes, missed bytes, original 

packets, original IP bytes, response packets, and response IP bytes. The protocol indicators are represented with binary 

flags for the ICMP, TCP, and UDP protocols. The connection states are encoded through several binary columns 

representing different conditions in the connection, including OTH, REJ, RSTO, RSTOS0, RSTR, RSTRH, S0, S1, 

S2, S3, SF, SH, and SHR. In the dataset, class distribution came out to be seven categories of network traffic: Benign 

(26,001 instances), PartOfAHorizontalPortScan (12,369 instances), C&C (5,618 instances), Attack (3,814 instances), 

Okiru (163 instances), DDoS (36 instances), and FileDownload (2 instances). This imbalanced distribution reflects 

real network traffic, where normal traffic dominates, while certain types of attacks rarely occur but are very important 

to detect. 
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Data Preparation and Feature Engineering  

Data preparation included several steps necessary to ensure the suitability of the dataset for machine learning. First, 

quality checking of data was performed, confirming the absence of duplicate and missing values in all 25 features for 

each of the 48,003 entries. These features were composed of 6 columns of float64 type, 18 columns of int64 type, and 

1 object-type column label. 

We then implemented label encoding using sci-kit-learn's LabelEncoder to prepare the categorical label variable for 

machine learning model use. The categorical attack labels have been changed in this transformation to their numerical 

values, keeping their distinct classification: Attack 0, Benign 1, C&C 2, DDoS 3, FileDownload 4, Okiru 5, and 

PartOfAHorizontalPortScan 6. Encoding was an essential step to allow the machine learning algorithms to process 

this target variable while preserving the interpretability of results.  The numerical columns were left in their raw state, 

as scaling and normalization had already been appropriately addressed in the collection of the data. Binary indicators 

for protocols and connection states were left in their raw state; the current format represented those features optimally 

for machine learning consumption. 

Model Architecture and Parameters 

The study adopted three machine learning algorithms, Random Forest, XGBoost, and LightGBM. The Random Forest 

classifier was configured with 100 estimators and implemented by using scikit-learn's RandomForestClassifier. This 

ensemble learning technique was selected because it can handle nonlinear relationships and offers robust performance 

when applied to imbalanced datasets. Thus, the architecture of the model can learn complex patterns in network traffic 

while resisting overfitting due to its ensemble nature. 

 

Figure 1: Random Forest classifier Architecture(Author,s construct, 2025) 

The XGBoost classifier was implemented with carefully tuned hyperparameters, including 100 estimators, a learning 

rate of 0.1, and a maximum tree depth of 6. These parameters were selected to balance model complexity with 
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computational efficiency while maintaining strong predictive performance. XGBoost's gradient boosting framework 

provides additional advantages in handling imbalanced classes and capturing subtle patterns in the data. 

The LightGBM classifier was configured similarly to XGBoost, with 100 estimators, a 0.1 learning rate, and a 

maximum depth of 6. LightGBM's leaf-wise growth strategy offers computational advantages while maintaining high 

prediction accuracy. The consistent hyperparameter settings across XGBoost and LightGBM were maintained to 

ensure a fair comparison of their underlying algorithmic differences. 

 

Figure 2 LightGBM classifier Architecture (Author,s construct, 2025) 

Training and Evaluation Framework 

The dataset was split into the training-testing sets in a ratio of 70:30, respectively, with a random state of 42 for 

reproducibility. This led to 33,602 instances for training and 14,401 for testing while keeping the original class 

distribution proportions. The stratified split made sure that both the training and testing sets contained representative 

samples of all attack types, especially important in the case of infrequent classes such as DDoS and FileDownload. 

Each model was trained on the same training dataset and evaluated using the same test set to ensure a fair comparison 

among them. The evaluation metrics include overall accuracy, precision, recall, and F1-score of each class to 

comprehensively assess the performance of the models across all types of attacks. Moreover, to have an idea about 

which network traffic characteristics drive each model to detect a particular type of attack, a feature importance 

analysis was performed for each model. 

Model Evaluation Metrics 

The proposed evaluation framework was developed to yield a detailed model performance evaluation based on the 

following metrics:   

1.  Overall Accuracy: Measuring the total proportion of correct predictions across all classes. 

2. Per-class Precision: Evaluating the accuracy of positive predictions for each attack type. 

3. Per-class Recall: Assessing the model's ability to detect all instances of each attack type. 

4. F1-score: Providing a balanced measure of precision and recall for each class. 
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5. Feature Importance: Analyzing which network traffic characteristics were most influential in the 

classification decision. 

RESULTS 

Network Traffic Distribution Analysis 

Preliminary analysis of the network traffic dataset showed a high imbalance within each of the classes of traffic. Table 

1 provides the overall distribution of all the traffic classes. The benign traffic class was dominant, with 26,001 

instances, representing 54.2% of the whole dataset. The PartOfAHorizontalPortScan class was the second most 

frequent, with 12,369 instances, corresponding to 25.8%. The C&C traffic accounted for 5,618 instances or 11.7%, 

while Attack traffic accounted for 3,814 instances or 7.9%. Other critical but less frequent attack types in the dataset 

included Okiru with 163 instances or 0.3%, DDoS with 36 instances or 0.1%, and FileDownload with only 2 instances 

or less than 0.01%. 

Table 1: Distribution of Network Traffic Classes in the Dataset 

Traffic Class Number of Instances Percentage (%) 

Benign 26,001 54.2 

PartOfAHorizontalPortScan 12,369 25.8 

Command and Control (C&C) 5,618 11.7 

Attack 3,814 7.9 

Okiru 163 0.3 

DDoS 36 0.1 

FileDownload 2 <0.01 

Total 48,003 100 

 

Model Performance Analysis 

From the comparative analysis of the three implemented machine-learning models, their effectiveness in classifying 

network traffic patterns was found to be very different. Among them, XGBoost performed the best with an overall 

accuracy of 0.90, far outperforming both Random Forest and LightGBM models. The Random Forest classifier 

resulted in an accuracy of 0.81, while LightGBM exhibited a far inferior performance with a mere accuracy of 0.50. 

Tables 2, 3, and 4 depict the detailed performance metrics for each model in terms of precision, recall, and F1 scores 

across all traffic classes. 
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Table 2: Random Forest Classification Performance Metrics 

Class Precision Recall F1-score Support 

0 1.00 1.00 1.00 1,169 

1 0.83 0.83 0.83 7,839 

2 0.35 0.36 0.36 1,665 

3 0.64 0.70 0.67 10 

5 0.79 0.68 0.73 50 

6 0.94 0.94 0.94 3,668 

Accuracy   0.81 14,401 

Macro Avg 0.76 0.75 0.75 14,401 

Weighted Avg 0.82 0.81 0.82 14,401 

 

It gave a precision of 1.00 and a recall of 1.00 for the Random Forest model in detecting Attack traffic, and it was also 

quite strong in detecting PartOfAHorizontalPortScan activities with a precision and recall of 0.94. The model 

performed moderately on minority classes such as DDoS and Okiru with F1-scores of 0.67 and 0.73, respectively. 

Table 3: XGBoost Classification Performance Metrics 

Class Precision Recall F1-score Support 

0 1.00 1.00 1.00 1,169 

1 0.86 0.98 0.91 7,839 

2 0.98 0.32 0.48 1,665 

3 0.78 0.70 0.74 10 

5 0.82 0.90 0.86 50 

6 0.96 0.95 0.96 3,668 

Accuracy   0.90 14,401 

Macro Avg 0.90 0.81 0.82 14,401 

Weighted Avg 0.91 0.90 0.88 14,401 

 

XGBoost turned out to be the best, with perfect detection rates for Attack traffic, while improving the performance 

for other classes. The model yielded very high precision and recall for the classes of Benign traffic (0.86 and 0.98, 

respectively) and PartOfAHorizontalPortScan (precision: 0.96 and recall: 0.95). More importantly, XGBoost 

significantly enhanced the capability of detecting minority classes with improved F1 scores for both DDoS (0.74) and 

Okiru (0.86). 
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Table 4: LightGBM Classification Performance Metrics  

Class Precision Recall F1-score Support 

0 0.00 0.00 0.00 1,169 

1 0.74 0.85 0.79 7,839 

2 0.10 0.29 0.15 1,665 

3 0.00 0.00 0.00 10 

5 0.00 0.00 0.00 50 

6 0.26 0.02 0.03 3,668 

Accuracy   0.50 14,401 

Macro Avg 0.18 0.19 0.16 14,401 

Weighted Avg 0.48 0.50 0.45 14,401 

 

LightGBM performed much worse in the vast majority of the traffic classes. The model generally had a problem, 

especially with the minority classes, in detecting the traffic as Attack, DDoS, and Okiru, with F1-scores of 0.00. Its 

only mediocre performance was in classifying the Benign traffic, where its precision was 0.74 and recall was 0.85. 

Feature Importance Analysis 

The analysis of feature importance across models demonstrates a clear difference in the way each algorithm weighed 

various characteristics of network traffic. Figure 3 illustrates the distribution of feature importance for the Random 

Forest model, with duration as the most critical feature at an importance score of 0.5548. 

 

Figure 3: Random Forest Feature Importance Distribution 

Figure 4 XGBoost Feature Importance Distribution Connection states are the top features in the XGBoost feature 

importance distribution, especially the features for conn_state_S0 and conn_state_S3, with importance scores of 

0.3830 and 0.1450, respectively.  
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Figure 4: XGBoost Feature Importance Distribution 

Figure 5LightGBM Feature Importance Distribution Figure 3 presents the feature importance distribution of 

LightGBM, which assigns extremely high importance to the feature's duration (5204.0000) and features related to 

bytes. 

 

Figure 5: LightGBM Feature Importance Distribution 

Table 5 contrasts the top five features selected by each model and highlights both similarities and differences among 

algorithms regarding feature selection. 
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Table 5: Top Five Important Features by Model  

Rank Random Forest XGBoost LightGBM 

1 duration: 0.5548 conn_state_S0: 0.3830 duration: 5204.0000 

2 resp_ip_bytes: 0.0700 conn_state_S3: 0.1450 orig_ip_bytes: 1225.0000 

3 resp_bytes: 0.0645 resp_bytes: 0.1365 orig_bytes: 1128.0000 

4 orig_bytes: 0.0586 proto_tcp: 0.0963 resp_bytes: 821.0000 

5 orig_pkts: 0.0541 resp_pkts: 0.0452 orig_pkts: 778.0000 

 

The feature importance analysis showed that while different models focused on different features, some network 

characteristics were always part of the set of key indicators for traffic classification. Time and byte-related metrics 

showed the highest importance in all models, which shows their fundamental role in distinguishing between different 

types of network traffic and detecting potential attacks. As a result of this detailed analysis, XGBoost emerged as the 

best model in IoT threat detection, thus showing better performance in both majority and minority class detection. 

Identification of the key features informs and provides valuable insight into the optimization of future detection 

systems, especially in resource-constrained IoT environments where efficiency in feature selection is crucial. 

DISCUSSION 

The experimental results clearly show that different machine learning approaches have varying levels of effectiveness, 

which may be very practical for implementation into IoT security systems. Class distribution analysis demonstrated 

that our dataset had a rather significant imbalance, where benign traffic comprised around 54.2% of all instances, and 

horizontal port scans took 25.8%. This reflects realistic scenarios since most of the network communications will be 

dominated by legitimate traffic, while malicious activities represent a relatively small but important fraction of the 

total traffic, as stated by (Johnson and Lee, 2022). Especially the low representation of attack types like DDoS (0.1%) 

and FileDownload (<0.01%) do pose specific model training and evaluation challenges, which similarly happened in 

the studies on IoT network traffic patterns (Hindy et al., 2020). 

Among the rest, the best-performing model was XGBoost, which yielded 90% overall accuracy while showing strong 

performances for both majority and minority classes. This performance is in line with recent findings by Mamidanna 

et al. (2022) that gradient-boosting approaches are especially effective in the case of imbalanced network security 

datasets. Maintaining a high precision of 0.98 for C&C detection with perfect classification of 1.00 for Attack traffic 

allows us to say that this model could be put into production in any IoT security environment. 

The Random Forest classifier's performance (81% accuracy) showed particular strength in handling the Attack class 

and PartOfAHorizontalPortScan detection, achieving F1-scores of 1.00 and 0.94 respectively. This robust 

performance on specific attack types supports (Hasan et al., 2019) findings regarding the effectiveness of ensemble 

methods in capturing diverse attack patterns. However, the model's relatively lower performance on C&C traffic (F1-

score: 0.36) indicates potential limitations in detecting more subtle forms of malicious activity. The rather poor 

performance of LightGBM-this performs with only an accuracy of 50% within our experimentation-becomes 
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contradictory to several previous studies that found this algorithm very effective in network traffic classification. This 

might be attributed to the specific characteristics of IoT network traffic and extreme class imbalance in our dataset. 

Feature importance analysis across the models revealed some interesting patterns. Duration was found to be an 

important feature consistently, but in Random Forest, it was 0.5548, and for LightGBM, it was 5204.0000. This 

corroborates the findings of Yin et al. (2021), where temporal features were highlighted to be indicative of malicious 

activities in IoT networks. However, XGBoost's emphasis on connection states is varying-conn_state_S0: 0.3830-

provides another dimension and points to the fact that connection establishment patterns could be indicative of certain 

types of attacks. These various rankings of feature importance among different models bring different insights into 

various aspects of attack detection. Random Forest gives high importance to byte-related features such as 

resp_ip_bytes and resp_bytes, indicating that traffic volume metrics play a significant role in the detection of attacks, 

which confirms findings in recent studies on IoT traffic analysis. XGBoost focuses on connection states and protocol 

information, indicating that the pattern of connection behavior plays an important role in attack detection, especially 

for some sophisticated attacks that do not have obvious anomalies in traffic volume. 

CONCLUSION 

This work demonstrated that machine learning approaches were effective in developing adaptive Threat Intelligence 

systems for IoT networks. This study analyzed three machine learning algorithms working with the diverse IoT 

network traffic dataset, showing large variations in their capabilities to detect and classify different types of network 

attacks.  Among them, XGBoost turned out to be the best, yielding an accuracy of 90% for different attack categories, 

which again proved its strength in handling both majority and minority classes well. Given its superior performance, 

especially in catching the subtle patterns of the attacks with high precision, XGBoost is very promising for practical 

IoT security implementations. It does so by effectively classifying the rare attack instances with high accuracy for 

frequent traffic patterns, hence addressing one of the fundamental challenges in IoT security: the class-imbalance 

problem inherent in network traffic data. Feature importance analysis provided features important for the optimization 

of IoT security systems and identified duration, connection status, and bytes-related metrics as indicative features for 

attack detection. The findings provide guidelines on feature selection in resource-constrained IoT environments where 

processing efficiency is a major factor. Specific features being consistent across models may point to fundamental 

characteristics of features that need to be focused on in IoT security monitoring systems. These findings add to the 

ever-evolving field of security in IoT by providing empirical evidence for the efficiency of some machine learning 

approaches and pointing out a portion of the important features for attack detection. Results provide practical insights 

into the implementation of adaptive threat intelligence systems in IoT networks but also point out the need for further 

research in this rapidly changing area.   
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